Efficient estimation of parameters of nonlinear regression models is a fundamental problem in applied statistics. Isolated large values in the random noise associated with model, which is referred to as an outliers or an atypical observation, while of interest, should ideally not influence estimation of the regular pattern exhibited by the model and the statistical method of estimation should be robust against outliers. The nonlinear least squares estimators are sensitive to presence of outliers in the data and other departures from the underlying distributional assumptions. The natural choice of estimation technique in such a scenario is the robust M-estimation approach. Study of the asymptotic theoretical properties of M-estimators under different possibilities of the M-estimation function and noise distribution assumptions is an interesting problem. It is further observed that a number of important nonlinear models used to model real life phenomena have a nested superimposed structure. It is thus desirable also to have robust order estimation techniques and study the corresponding theoretical asymptotic properties. Theoretical asymptotic properties of robust model selection techniques for linear regression models are well established in the literature, it is an important and challenging problem to design robust order estimation techniques for nonlinear nested models and establish their asymptotic optimality properties. Furthermore, study of the asymptotic properties of robust M-estimators as the number of nested superimposing terms increase is also an important problem. Huber and Portnoy established asymptotic behavior of the M-estimators when the number of components in a linear regression model is large and established conditions under which consistency and asymptotic normality results are valid. It is possible to derive conditions under which similar results hold for different nested nonlinear models.