Economic globalization and evolution of information technology has in recent times accounted for huge volume of financial data being generated and accumulated at an unprecedented pace. Effective and efficient utilization of massive amount of financial data using automated data driven analysis and modelling to help in strategic planning, investment, risk management and other decision-making goals is of critical importance. Data mining techniques have been used to extract hidden patterns and predict future trends and behaviours in financial markets. Data mining is an interdisciplinary field bringing together techniques from machine learning, pattern recognition, statistics, databases and visualization to address the issue of information extraction from such large databases. Advanced statistical, mathematical and artificial intelligence techniques are typically required for mining such data, especially the high frequency financial data. Solving complex financial problems using wavelets, neural networks, genetic algorithms and statistical computational techniques is thus an active area of research for researchers and practitioners.