Course Template for M.Tech./BT-MT (dual degree)

	Semester →	1	2	Summer Term	3	4
Courses		SEE-601* [9]	SEE-604* [9]	0-2 Research Credits	SEE699 [36]	SEE699 [36]
				(SEE699)/Courses		
		SEE-602* [9]	SEE-605** [9]			
		SEE-603* [9]	SEE-612* [9]			
		SEE-609*^ [9]	SEE801/802**[0]		SEE801/802**[0]	
		1-3 DE [9-27]	1-3 DE [9-27]			
		0-2 OE ^{\$} [0-18]	0-2 OE ^{\$} [0-18]			
	Credits →	36	36	[0-18]#	36	36
					Min. Total Credits (PG)	144

- Total number of courses: 8
- *Student must take a total of 2 core basket courses combined from Semester I and II.
- **Compulsory course.
- A student should take at least 3DE's.
- *,^Refer to the open elective course basket for more details. *Optional summer research credits

	Department Electives (DE)			
SEE-606: Electrochemical Energy Systems	SEE-621: Biomass Conversion and Biorefineries			
SEE-607: Hydrogen Energy: Production, Storage and Utilization	SEE-622A: Sustainable Energy- Enabling Net Zero Emissions			
SEE-608: Introduction to Bioenergy and Biofuels	SEE-623: Fuel Cell Electrical Energy Systems			
SEE-610: Introduction to Materials Modelling and Simulations	SEE-624A: Design Strategies for Net-Zero Energy Buildings			
SEE-611: Energy Systems: Modelling and Analysis	SEE-625: Structural, Microstructural and Spectroscopic Characterization of Materials			
SEE-612: Manufacturing of Energy Systems	SEE-626M: Ecological Principles and Biodiversity for Sustainability			
SEE 613: Solar Photovoltaics	SEE-628: Policy Processes and Analytical Methods: Application to Climate Policies			
SEE-614: Wind Energy	SEE-629M: Ecology, Equity and the Economy			
SEE-615: Solar Thermal Engineering	SEE-631 Sustainable Forest Management			
SEE-616: Renewables Integrated Smart Power Systems	SEE-632: Heating, Ventilation, and Air-Conditioning of Buildings			
SEE-617: Introduction to Sustainable Energy Policy	SEE-633: Power Electronics for Electric Vehicles			
SEE-618A: Energy Efficient Building Design	SEE-634: Critical Material Resources for Clean Energy Transition			
SEE-619: Finite Volume Methods for Engineers				
SEE-620A: Heat Driven Cooling Systems	Any other SEE [3-0-0-9] courses that will be added later.			
Open Electives (OE)				
EE698E: Power Converters for EV Charging	CHE642A: Numerical Methods^			
EE662: Control Techniques in Power Electronics	ME685A: Applied Numerical Methods^			
EE698A: EMI/EMC in Power Electronics	AE603: Introduction to Scientific Computing^			
EE798A: Design, Operation, and Control of Microgrids	CHE622A: Molecular Simulations^			
EE630A: Simulations of Power Systems	ChE626A: Practical Introduction to Quantum Mechanical Methods for Scientists and Engineers^			
EE660A: Basics of Power Electronic Converters	MBA681A: Energy and Carbon Markets: Economics, Policy and Regulation			
EE631A: Advanced Power System Stability	MBA782A: Renewable Energy - Economics, Policy and Regulation			
ME743: Fuel Cells	MBA683A: Power Sector Reform and Regulation			
MSE673: Fundamentals and Applications of Electrochemistry	Any other 600 level or higher-level course in the institute of minimum 9 credits			

[^]Students can take one of these courses if they have not credited SEE 609 [9].

Minimum credit requirements for M. Tech.

Coursework	72
Thesis	72
Total	144

⁽i.e. Students can take ONLY one of the following set: CHE642A, ME685A, AE603, SEE-609 and ONLY one of the following two: CHE622A, ChE626A.