ACADEMIC YEAR: 2020-2021; 2nd SEMESTER

Department of Physics, Indian Institute of Technology Kanpur

PHY604A: Review of Statistical Physics

Instructor-in-charge: Sagar Chakraborty

(Weekly 1 lecture and 3 tutorials. Only the PhD students of Physics Department are encouraged to take the course. Students, who have already done PHY412A, should opt for other elective courses.)

Course Contents:

- 1. Review of thermodynamics and probability theory.
- 2. Basic principles of equilibrium classical statistical mechanics; micro-canonical, canonical and grand-canonical ensembles.
- 3. Quantum statistical mechanics, density matrix, path integral, ideal quantum gases and their properties, Bose–Einstein condensation, free electron gas.
- 4. Ising model of magnetism, transfer matrix method, mean field theory, phase transitions, Curie–Weiss theory, Landau theory, scaling near a critical point.
- 5. Brief overview of non-equilibrium statistical mechanics: random walk, brownian motion, diffusion equation, Langevin and Fokker–Planck equations, Markov processes and master equation, systems near equilibrium linear response theory, fluctuation dissipation theorem, escape over a barrier relaxation phenomena, critical dynamics.

References Books:

- 1. F. Reif, Fundamentals of statistical and thermal physics (McGraw Hill, 1985).
- 2. L. D. Landau and E. M. Lifshitz, Statistical Mechanics (Academic Press, 1975).
- 3. K. Huang, Statistical Mechanics (Wiley, 1987).
- 4. M. Kardar, Statistical Physics of Particles (CUP, 2007).
- 5. R. K. Pathria and P. D. Beale, Statistical Mechanics (Academic Press, 2007).
- 6. S. K. Ma, Statistical Mechanics (World Scientific, 1985).
- 7. R. P. Feynman, Statistical Mechanics: A Set Of Lectures (Reading, MA: Benjamin, 1972).
- 8. D. Chowdhury and D. Stauffer, Principles of Equilibrium Statistical Mechanics (Wiley, 2000).
- 9. J. K. Bhattacharjee and D. Banerjee, Intermediate Statistical Mechanics: A Handbook (World Scientific, 2017).