# PHY 313a: Physics of Information Processing

#### Course Outline:

### Module 1: Information, noise and statistical processes (5 weeks, 16 lectures)

- Introduction to Shanon's information theory (1 week)
- Formal theory of noise; shot noise, Johnson noise, 1/f noise (2 weeks)
- Information theory in context of statistical mechanics and precision of general measurements (1 week)

## Module 2: Modes of information (5 weeks, 18 lectures)

- Electromagnetic waves, waveguides, antennas, lasers, modulators, switches (2.5 weeks)
- Information with solid state devices: electronic materials, devices and systems with exotic states (2.5 weeks)

### Module 3: Introduction to quantum information (2 weeks, 6 lectures)

- Basic elements of quantum technologies: C-NOT gates and non-cloning theorem (1-week)
- Practical realizations: cavity-QED, superconducting gubits (1 week)

### Primary reference;

We will be following the book below very closely, all along the semester:

### "Physics of Information Technology" by Neil Gershenfeld

There are several secondary references which will be mentioned as the course progresses, the most important of them being <u>Claude Shanon's 1948 paper titled: "A mathematical theory of communication" and is widely available online.</u>

The book and the paper, along with the above contents should give a fair idea of what to expect from this course.