ACADEMIC YEAR: 2018-2019; 1st SEMESTER

PHY670: EVOLUTIONARY GAME DYNAMICS

Instructor: Sagar Chakraborty, Department of Physics, IIT Kanpur.

(3 lecture hours per week. No prerequisite required but a taker of the course must be comfortable with mathematical way of thinking.)

Details of Course-Content:

S. No.	Broad Title	Topics	No. of Lectures
1.	Basics of evolution	Examples of evolution in biology, ecology, society, and language; Darwin's theory; Fisher's fundamental theorem; Price equation; Hamilton's inclusive fitness theory.	6
2.	Basics of game theoretic concepts	Concepts* of Nash equilibrium, Pareto efficiency, risk dominance, and evolutionary stable strategy; normal and extensive forms; repeated games and evolution of cooperation; spatial games.	8
3.	Basics of nonlinear dynamics	Autonomous flows and maps, fixed points, linear stability analysis, limit cycles, chaos.	4
4.	Games in infinite population: deterministic models	Quasispecies equation, replicator-mutator equation, imitation dynamics, monotone selection dynamics, best-response dynamics, adjustment dynamics, adaptive dynamics, evolutionary stable state, connection between replicator-mutator equation and expanded Price equation, Folk theorem, application to language evolution.	10
5.	Games in finite population: stochastic models	Moran process, birth-death process, fixation probability, Kimura's neutral theory of evolution, one-third law and its relation with risk dominance, evolutionary stability, evolutionary graph theory.	12
Total number of lectures:			40

^{*=} Only concepts will be discussed; no formal rigorous proof will be done.

Recommended Books:

- A) M. A. Nowak, Evolutionary Dynamics, The Belknap Press of Harvard University Press (2006).
- B) J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press (1998).
- C) J. Maynard Smith, Evolution and the Theory of Games, Cambridge University Press (1982).
- D) S. H. Rice, Evolutionary Theory, Oxford University Press (2004).
- E) J. A. R. Marshall, Social Evolution and Inclusive Fitness Theory, Princeton University Press (2015).
- F) A. F. G. Bourke, Principles of Social Evolution, Oxford University Press (2011).
- G) R. Cressman, Evolutionary Dynamics and Extensive Form Games, The MIT Press (2003).
- H) D. Easley and J. Kleinberg; Networks, Crowds, and Markets; Cambridge University Press (2010).