Indian Institute of Technology, Kanpur

Proposal for a New Course

- 1. Course No: ME***
- 2. Course Title: Advanced Engineering Thermodynamics
- 3. Per week Lectures: 3 (L), Tutorials: 0 (T), Laboratory: 0 (P), Additional Hours: 0(A)
- 4. Credits(3*L+2*T+P+A):9
- 5. Duration of Course: Full Semester
- 6. Proposing Department/IDP: Mechanical Engineering

Other Department/IDP which may be interested in the proposed course: SEE, AE Other faculty members interested in teaching the proposed course: Malay Kumar Das (ME), Vaibhav Arghode (AE/SEE)

- 7. Proposing Instructor(s): Jishnu Bhattacharya (ME)
- 8. Course description
 - A) Objective:

The course is targeted to the PG students with background in mechanical engineering who are familiar with the basic UG thermodynamics course. In many cases, these students need familiarity with advanced topics in thermodynamics to apply in their inter-disciplinary research problems. The topics which are covered in material science, chemical engineering, physics or chemistry courses on thermodynamics often remain out of access for the students with mechanical engineering background. The proposed course attempts to bridge this specific gap.

B) Contents

S. No	Broad Title	Topics	No of
			Lectures
1	Thermodynamic	Maxwell equation, Clapeyron equation,	2
	Property	Clausius-Clapeyron equation,	
	Relations	Generalized form of first and second	
		law, Equations of state	
2	Characteristic	Euler relation, Gibbs-Duhem relation,	2
	potentials	Legendre transform, Characteristic	
		potential and its significance in terms of	
		equilibrium	
3	Pure substances	Response functions, Relationships	3
		between different response functions,	
		Joule-Thompson coefficient, Phase rule,	
		Pure substance phase diagram	
4	Mixtures	Partial Molar quantities, Chemical	3
		potential, Gibbs-Duhem relation, Ideal	
		gas mixture, Real gas mixture, Fugacity	
5	Solutions	Chemical potential of liquid, Raoult's	4
		law, Henry's law, Ideal solution, Ideal-	
		dilute solution, Regular solution,	
		Properties of mixing	
6	Colligative	Lowering of vapour pressure, Elevation	3
	properties	of boiling point, Depression of freezing	
		point, Osmotic pressure, ideal solubility	
		limit	
7	Activities	Activity of solvent, activity of solute,	3
		activity in terms of molality, Regular	
		solution model, activities of ions, mean	

		activity coefficient, Debye-Huckel	
		limiting law	
8	Binary Phase	Vapour pressure diagram, Vapour	5
	Diagrams	composition, Bubble point and Dew	
		point, pressure-composition phase	
		diagram, temperature-composition	
		phase diagram, Combined VLE diagram,	
		azeotropes, miscibility gap, spinodal,	
		upper and lower critical points, Eutectic,	
		Eutectoid, solid solution	
9	Chemical	Reaction Gibbs free energy, Formation	5
	Equilibrium	Gibbs energy, Reaction quotient,	
		Equilibrium constant, Molecular	
		interpretation, Response to pressure	
		and temperature change, La-Chatelier	
		principle, Van't Hoff equation	
10	Electrochemical	Redox reaction, Half-cell reaction, Cell	4
	cells	configurations, Nernst equation, Cell	
		potential, Standard electrode potential,	
		Standard Hydrogen electrode,	
		Temperature coefficient,	
		Electrochemical series	
11	Statistical	Configuration, Degeneracy, Most	6
	thermodynamics	probable distribution, Boltzmann	
		distribution, Partition function, Lagrange	
		multipliers, Uniform ladder, Product of	
		partition functions, Canonical	
		ensemble, Mean energy, Heat capacity,	
		Entropy, Derived functions	

- C) Pre-requisites: Undergraduate Engineering Thermodynamics (Equivalent to ESO201)
- D) Short summary

The course is for the PG students with background in mechanical engineering who lack familiarity with advanced topics in thermodynamics from other streams of science which are often necessary in their interdisciplinary research. The broad topics which will be covered in this course are as follows: Thermodynamic property relations, Characteristic potentials, Pure substance, Mixtures, Solutions, Colligative properties, Activities, Binary phase diagram, Chemical equilibrium, Electrochemical cells and Statistical thermodynamics.

- 9. Recommended books
 - a. Engineering Thermodynamics: Cengel and Boles
 - b. Chemical Engineering Thermodynamics: Smith, Ness and Abbott
 - c. Fundamentals of Classical Thermodynamics: Van Wylen, Sonntag and Borgnakke
 - d. Physical Chemistry: Atkins and De Paula
 - e. Statistical Thermodynamics: McQuarrie

^{10.} Any Other remarks: Nil

Dated:

Proposer:

Dated:

DPGC Convener:

The course is approved or not

Chairman, SPGC

Dated: